Aggressive behavior, increased accumbal dopamine, and decreased cortical serotonin in rats.

نویسندگان

  • A M van Erp
  • K A Miczek
چکیده

Dopamine (DA) and serotonin have been implicated in the regulation of aggressive behavior, but it has remained challenging to assess the dynamic changes in these neurotransmitters while aggressive behavior is in progress. The objective of this study was to learn about ongoing monoamine activity in corticolimbic areas during aggressive confrontations in rats. Male Long-Evans rats were implanted with a microdialysis probe aimed at the nucleus accumbens (NAC) or medial prefrontal cortex (PFC); next, 10 min samples were collected before, during, and after a 10 min confrontation. Rats continued to display aggressive behavior while being sampled, and they performed two to six attack bites as well as 140 sec of aggressive acts and postures. Dopamine levels in NAC were significantly increased up to 60 min after the confrontation. Peak levels of 140% were achieved approximately 20-30 min after the confrontation. No concurrent changes in accumbal serotonin levels were seen during or after the confrontation. Dopamine and serotonin levels in PFC changed in the opposite direction, with a sustained decrease in serotonin to 80% of baseline levels during and after the confrontation and an increase in dopamine to 120% after the confrontation. The temporal pattern of monoamine changes, which followed rather than preceded the confrontation, points to a significant role of accumbal and cortical DA and 5-hydroxytryptamine in the consequences as opposed to the triggering of aggressive acts. The increase in accumbal DA in aggressive animals supports the hypothesis that this neural system is linked to the execution of biologically salient and demanding behavior.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accumbal dopamine and serotonin in anticipation of the next aggressive episode in rats.

Autonomic and limbic neural activities are linked to aggressive behavior, and it is hypothesized that activities in the cardiovascular and monoaminergic systems play a role in preparing for an aggressive challenge. The objective was to learn about the emergence of monoamine activity in nucleus accumbens before an aggressive confrontation that was omitted at the regular time of occurrence, disso...

متن کامل

Augmented cocaine-induced accumbal dopamine efflux, motor activity and place preference in rats fed with a tryptophan-deficient diet.

In the present study we demonstrate that consumption of a tryptophan-deficient diet for a period of 14 days decreased the striatal serotonin and 5-hydroxyindolacetic acid tissue content in rats, whereas the level of dopamine remained unchanged. Under this condition of diminished serotonergic tone, a challenge dose of cocaine (10mg/kg, i.p.) significantly increased motor activity and dopamine ex...

متن کامل

A Role for Accumbal Glycine Receptors in Modulation of Dopamine Release by the Glycine Transporter-1 Inhibitor Org25935

Accumbal glycine modulates basal and ethanol-induced dopamine levels in the nucleus accumbens (nAc) as well as voluntary ethanol consumption. Also, systemic administration of the glycine transporter-1 inhibitor Org25935 elevates dopamine levels in nAc, prevents a further ethanol-induced dopamine elevation and robustly and dose-dependently decreases ethanol consumption in rats. Here we investiga...

متن کامل

Inhalative formaldehyde exposure enhances aggressive behavior and disturbs monoamines in frontal cortex synaptosome of male rats.

Formaldehyde (FA) exposure is known to be toxic to central nervous system of mammals. In this paper, we evaluated the aggressive behavior after repetitive inhalative FA exposure to male SD rats, and explored the potential mechanism. The rats, ranging from 160 to 180 g, were randomly designated into the orchiectomized (ORX) group, the control and the inhalative FA treatment groups. Eight rats un...

متن کامل

Nucleus accumbens and dopamine-mediated turning behavior of the rat: role of accumbal non-dopaminergic receptors.

Accumbal dopamine plays an important role in physiological responses and diseases such as schizophrenia, Parkinson's disease, and depression. Since the nucleus accumbens contains different neurotransmitters, it is important to know how they interact with dopaminergic function: this is because modifying accumbal dopamine has far-reaching consequences for the treatment of diseases in which accumb...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 20 24  شماره 

صفحات  -

تاریخ انتشار 2000